
��������	
�� �
������ ��

����� ���	
�� ������ ��
���	�� ��
�� ���������

�������� �	
��� �
 ��
�������� �	���	��� ��
��� ����������� �����
����	
��� ��
���	����	���������������
������ ��
�������������
������

��������

Agents often have to solve series of similar path planning
problems. Adaptive A* is a recent incremental heuristic
search algorithm that solves such problems faster than A*,
updating a heuristic function (also known as h-values) using
information from previous searches. In this paper, we ad-
dress path planning with multiple targets on Adaptive A*
framework. Although we can solve such problems by calcu-
lating the optimal path to each target, it would be inefficient,
especially when the number of targets is large. We consider
two cases whose objectives are (1) an agent reaches one of
the targets, and (2) an agent has to reach all of the targets.
We propose several methods to solve such problems keeping
consistency of a heuristic function. Our experiments show
that the proposed methods properly work on an application,
i.e., maze problems.

���	
��
	� ��� ����	�� �	���
�����

I.2 [Artificial Intelligence]: Problem Solving

�	�	��� �	���

Algorithms

�	������

A*; Adaptive A*; Heuristic Search; Incremental Search;
Shortest Paths; Multi-Target Search

�� � ��!�"���!
Agents often have to solve series of similar path planning

problems. Adaptive A*, which is proposed by Koenig and
Likhachev [7], is a recent incremental heuristic search algo-
rithm that solves such problems faster than A*, updating
a heuristic function (also known as h-values) using infor-
mation from previous searches. They theoretically showed
that the incremental procedure of Adaptive A* keeps con-
sistency of a heuristic function [8]. Although the procedure
is simpler than other competitive algorithms [6, 10, 13], its
extensibility yields various versions of Adaptive A* [9, 11,
14, 15].

Cite as: ��������	
�� �
������ ��� ���
� �������� ������ ����������

��
 ����� �������	�� Proc. of 9th Int. Conf. on Autonomous
Agents and Multiagent Systems (AAMAS 2010)� ���
�	 �����

�������� �����	����� ���� ��
 ��� �
�!"� ���� #$%#&� '$#$� ��	�����

(���
�� ��!)))�)))!

(���	�
�� c© '$#$� *���	�������� +���
����� ,�	 ���������� �
���� ��

������
��� ������� ---!�,�����!�	
"! ��� 	�
��� 	���	��
!

In this paper, we address path planning with multiple
targets on Adaptive A* framework. We consider two cases
whose objectives are (1) an agent has to reach one of the
targets, and (2) an agent has to reach all of the targets.
We call the former OR setting and the latter AND setting.
For example, let us consider the Pac-Man video game as
an application as in Szita and Lörincz [16]. If we want to
improve the score, a good strategy is eating “ghosts” (or
enemy) to earn bonus points by utilizing“power pills”, which
allow Pac-Man to eat ghosts for a few seconds. In this case,
a path planning problem for eating the nearest power pill is
OR setting, and the problem for eating all of the ghosts is
AND setting.

There are a few studies about optimal path planning with
multiple targets [4, 2], while there are many studies on
heuristic algorithms without the guarantee of optimality,
such as Particle Swarm Optimization [3], Evolutionary Algo-
rithm [17], and Neural Network [1]. Our study is important
in the sense that it supports the research domain of optimal
path planning. At least, our study is the first approach to
path planning with multiple targets in recently developed
Adaptive A* framework.

#� $�%&�'� ���%�
We denote the size of a set S by |S| and similarly the

length of a sequence (or tuple) p ∈ S∗ by |p|. We denote
by p[i] the i-th element of a sequence p. Let � be the set
of natural numbers. We define [i, j] := { i, i + 1, · · · , j } for
any integers i, j ∈ � with i ≤ j. Let Πn be the set of all
permutations of [1, n]. Let � and �+ be the sets of real
numbers and positive real numbers, respectively.

Let G := (V, E, C) be a weighted graph, where V is a set
of nodes, E ⊆ V 2 is a set of edges, and C : E → �+ is a
weight function that attaches a positive weight to each edge.
Given e = (u, v) ∈ E, we also write C(u, v) instead of C(e).
A sequence (e1, · · · , e�) ∈ E∗ of edges is called a path from
σ ∈ V to γ ∈ V , if letting ei = (vi, v

′
i), v1 = σ, v′

� = γ, and
v′

i = vi+1 for any i ∈ [1, �−1]. We denote the set of all paths
from σ to γ by P (σ, γ) ⊆ E∗. For any path p ∈ P (σ, γ), we
define the total cost of edges in p by

C(p) :=
�

i∈[1,|p|]
C(p[i]).

We define P (v1, · · · , vn) := P (v1, v2) × · · · × P (vn−1, vn).
We denote the set of binaries of length n by Bn := {0, 1}n.

For any binary b ∈ Bn, we define ri(b) := b[1] · · · b[i−1]1b[i+
1] · · · b[n].

1065

1065-1072

��� ���� ���		
	� ��
����
We formalize our problem as follows.

Definition 1 (Path Planning Problem). A path plan-
ning problem is given by a tuple

P := (G, σ, Γ),

where

• G := (V, E, C) is a weighted graph. A node v ∈ V
means a position where an agent and targets can stay.
An edge e = (u, v) ∈ E means that an agent and tar-
gets can move from a node u to a node v, and a weight
C(e) of the edge e means a cost required for its move-
ment.

• σ ∈ V is an initial node, where an agent starts to
search.

• Γ ⊆ V is a set of goal nodes, where targets stay. When
the goals must be distinguished, we can access the i-th
goal by γi. We use n as the number of goals, that is
n := |Γ|, if not otherwise specified.

The graph in a path planning problem is also called a
state space in the literature on path planning. For the sake
of simplicity, given a path planning problem P, we use G,
σ, Γ, V , E, and C without explanation, assuming that P =
(G, σ, Γ) such that G = (V, E, C). If P has some additional
notation, all elements in P derive it, e.g., P ′ = (G′, σ′, Γ′).

In the case of an ordinary path planning problem, most
researchers focus only on path planning to a single target,
even though some of them use the notation with multiple
targets. The objective of path planning to a single target
is that an agent reaches the target with the minimum total
cost. We formalize it as a single solution defined below.

Definition 2 (Single Solution). Given a path plan-
ning problem P, we define that a single solution on P with
respect to γ is a shortest path from the initial node σ to a
goal node γ ∈ Γ, i.e.,

p∗
γ := argmin

p∈P (σ,γ)

C(p).

This paper focuses on the case where an agent must con-
sider all targets simultaneously. We consider two settings of
solution, OR and AND defined in Section 4 and Section 5,
respectively.

��� ����
��
��
Given a path planning problem P, we define the optimal

cost function H∗ : V 2 → �+ ∪ {0}, where H∗(u, v) is the
length of a shortest path from a node u ∈ V to a node v ∈ V .
That is,

H∗(u, v) := min
p∈P (u,v)

C(p).

We assume that an agent has a heuristic function H(u, v)
that estimates H∗(u, v) for any two nodes u, v ∈ V .

We define the following two properties for a heuristic func-
tion. Admissibility indicates that a heuristic function never
overestimates the optimal cost function.

Definition 3 (Admissibility). Let P be a path plan-
ning problem and H be a heuristic function. Given a node

v ∈ V on P, we say that H is admissible with respect to v
in P, if for any node u ∈ V ,

H(u, v) ≤ H∗(u, v).

We also say that H is admissible in P, if for any node v ∈ V ,
H is admissible with respect to v in P.

Consistency indicates that the triangle inequality holds
over a heuristic function.

Definition 4 (Consistency). Let P be a path plan-
ning problem and H be a heuristic function. Given a node
v ∈ V on P, we say that H is consistent with respect to v
in P, if

H(v, v) = 0

and for any edge (u, w) ∈ E,

H(u, v) ≤ C(u, w) + H(w, v).

We also say that H is consistent in P, if for any node v ∈ V ,
H is consistent with respect to v in P.

It is well known that if a heuristic function H is consis-
tent in a given path planning problem P, then H is also
admissible in P.

�� �������� ��
Koenig and Likhachev [7] proposed Adaptive A*, an in-

cremental version of A*. Adaptive A* solves series of simi-
lar search problems, updating its heuristic function between
search episodes. Let Pt be a path planning problem in the t-
th search episode. Adaptive A* can deal with change of Ct,
such that a cost Ct(e) may increase for any edge e ∈ Et, i.e.,
Ct(e) ≤ Ct+1(e). The other elements of Pt are equivalent to
the corresponding elements of Pt−1.

Let us define Ht as a heuristic function in the t-th search
episode. We use the notation of ht

γ(v) := Ht(v, γ) as a
heuristic function from a node v to a goal γ in t-th search
episode according to the custom.

A heuristic ht+1
γ (v) in (t + 1)-th episode is calculated by

the following update equation

ht+1
γ (v) = gt(γ) − gt(v), (1)

where gt(v), which is called a path-cost function, is the ac-
tual minimum cost from the start node σ to a node v that
expanded in t-th search episode. Koenig and Likhachev [8]
proved that if h0

γ is consistent with respect to γ in P0, then
ht

γ updated by Eq. (1) is also consistent with respect to
γ in Pt for any t ∈ �. Furthermore, they also proved
that ht

γ is monotonically nondecreasing with respect to t
and thus indeed becomes more informed over time, that is,
ht

γ(v) ≤ ht+1
γ (v) for any t ∈ �.

Sun et al. [14] proposed Generalized Adaptive A*, which
can deal with the case that a cost Ct(e) may decrease for any
edge e ∈ E. In such a case, Generalized Adaptive A* uses a
consistency procedure that eagerly updates ht

γ with a version
of Dijkstra’s algorithm, so that ht+1

γ keeps consistency.
There are several studies [5, 12, 11, 15] about a path plan-

ning problem with moving targets, where Γt can change.
Koenig et al. [11] proposed MT Adaptive A*, a version of
Adaptive A*. When a target moves from γt to γt+1 in the
t-th search episode, MT Adaptive A* calculates ht+1

γt+1 by

the following update equation

ht+1
γt+1(v) = max

�
Ht(v, γt+1), ht

γt(v) − ht
γt(γ

t+1)
�

, (2)

1066

where Ht+1(v, γt+1) = ht+1
γt+1(v) and Ht+1(v, u) = Ht(v, u)

for any u ∈ V satisfying u �= γt+1. They proved that if H0 is
consistent in P0 and hγ0(v) := H0(v, γ0), then ht

γt updated

by Eq. (2) is also consistent with respect to γt in Pt for any
t ∈ �.

�� �� �����	

We consider OR setting in a given path planning problem

P. In this case, an agent must find a shortest path reaching
the nearest target. We call it an OR solution and define as
follows.

Definition 5 (OR Solution). Given a path planning
problem P, we define that an OR solution on P is a shortest
path from the initial node σ to the nearest node in the set Γ
of goal nodes, i.e.,

p∗
or := argmin

p∈Por(σ,Γ)

C(p),

where Por(σ, Γ) :=
�

γ∈Γ P (σ, γ).

One naive approach is calculating the shortest paths to
all goal nodes in Γ. Obviously, we need |Γ| calculations of
A*. In this section, we change the configuration of a heuris-
tic function for single solution, so that only one calculation
achieves an OR solution on P, and discuss validity of it.

Given a path planning problem P, we define the optimal
cost function for OR solutions on P as the minimum cost of
the OR solution, i.e.,

h∗
or(v) := min

p∈Por(v,Γ)
C(p).

Let us consider a heuristic function hor for OR solution on
P. Since hor is the same form as hγ for single solution
with respect to γ, we can directly use A* for finding an OR
solution.

We define admissibility and consistency of hor in a similar
way to single solution. We say that if for any node v ∈ V ,

hor(v) ≤ h∗
or(v),

then hor is admissible with respect to OR solution in P and
if for any γ ∈ Γ,

hor(γ) = 0

and for any edge (u, v) ∈ E,

hor(u) ≤ C(u, v) + hor(v),

then hor is consistent with respect to OR solution in P.

��� ��
����
�� �
���� ��
���
We use the following heuristic hor for OR solution, defined

as

hor(v) := min
γ∈Γ

hγ(v). (3)

Eq. (3) allows us to use an ordinary heuristic function hγ for
each goal γ, e.g., Manhattan distance. The next theorem
proves its consistency.

Theorem 6. For any path planning problem P, if hγ is
consistent with respect to γ in P for any γ ∈ Γ, then a
heuristic function hor defined in Eq. (3) is also consistent
with respect to OR solution in P.

Proof. For any γ ∈ Γ,

hor(γ) = min
γ∈Γ

hγ(γ) = 0.

For any edge (u, v) ∈ E,

hor(u) ≤ min
γ∈Γ

{ C(u, v) + hγ(v) } = C(u, v) + hor(v).

From the above theorem, we can easily apply Adaptive
A* to a path planning problem with multiple targets of OR
setting. The property of Adaptive A* immediately proves
the following corollary.

Corollary 7. Let Pt be an path planning problem in the
t-th search episode and ht

or be a heuristic function for OR
solution in Pt. If hγ is consistent with respect to γ in P0

for any γ ∈ Γ0, and h0
or is initialized by hor in Eq. (3),

then ht
or updated by Eq. (1) is also consistent with respect

to OR solution in Pt for any t ∈ �, and is monotonically
nondecreasing with respect to t and thus indeed becomes more
informed over time, that is, ht

or(v) ≤ ht+1
or (v) for any t ∈ �.

��� ������ �
���� ��
���
In the case where targets can move, we cannot directly use

MT Adaptive A*. Instead of Eq. (2), we define the following
update formula

ht+1
or (v)=max

�
min

γ∈Γt+1
Ht(v, γ), ht

or(v) − max
γ∈Γt+1

ht
or(γ)

�
. (4)

Note that Ht+1(v, γ) is calculated by a similar fashion to
the case of Eq. (2). The next theorem shows its validity.

Theorem 8. Let Pt be an path planning problem in the
t-th search episode, Ht be a heuristic function in Pt, and
ht

or be a heuristic function for OR solution in Pt. If H0 is
consistent in P0 and hγ0(v) := H0(v, γ0), then ht

or updated
by Eq. (4) is also consistent with respect to OR solution in
Pt for any t ∈ �.

Proof. When t = 0, h0
or is obviously consistent with

respect to OR solution in P0.
When t > 0, suppose that ht

or is consistent with respect
to OR solution in Pt. From the assumption, Ht is also
consistent in Pt. Thus, for any γ′ ∈ Γt+1,

ht+1
or (γ′) = max

�
0, ht

or(γ
′) − max

γ∈Γt+1
ht

or(γ)

�
= 0,

and for any edge (v, u) ∈ E,

ht+1
or (v) ≤ Ct(v, u) + max

��
�

min
γ∈Γt+1

Ht(u, γ),

ht
or(u) − max

γ∈Γt+1
ht

or(γ)

��
	

= Ct+1(v, u) + ht+1
or (u).

Therefore, ht+1
or is consistent with respect to OR solution in

Pt+1.
By induction, for any integer t ≥ 1, ht

or is consistent in
Pt.

�� �	� �����	

We consider AND setting where an agent must find a

shortest path reaching all of the targets. We call it an AND
solution and define as follows.

1067

Definition 9 (AND Solution). Given a path planning
problem P, we define that an AND solution on P is a short-
est path starting from the initial node σ, traversing all of the
nodes in the set Γ of goal nodes, i.e.,

p∗
and := argmin

p∈Pand(σ,Γ)

C(p),

where Pand(σ, Γ) :=
�

π∈Πn
P (σ, γπ[1], · · · , γπ[n]).

We cannot take a similar approach to OR solution for
AND solution, since a node v ∈ V cannot reserve which
nodes an agent has already reached. In this section, we
discuss three approaches for directly using Adaptive A*.

��� �����	
����
��� ���
��
First we consider a straightforward method that calculates

the optimal cost H∗(γ1, γ2) between any two goals γ1, γ2 ∈ Γ
in a given path planning problem P and a shortest Hamil-
tonian path on a corresponding graph G′ with weight of the
calculated costs. We call G′ an abstract graph and formalize
it as follows.

Definition 10 (Abstract Graph). Given a path plan-
ning problem P and a heuristic function H on P, we define
the abstract graph of P with respect to H by

G′ := (V ′, E′, C′),

where V ′ := Γ ∪ {σ}, E′ := {(u, v) | u, v ∈ V ′}, and
C′(u, v) := H(u, v) for any u, v ∈ V ′.

input : Path planning problem P and heuristic
function H

output: AND solution on P
foreach u, v ∈ Γ ∪ {σ} do1

Q(u, v) ← a shortest path from u to v calculated2

by A* based on H;
H∗(u, v) ← C(Q(u, v));3

end4

p∗
shp ← a shortest Hamiltonian path from σ on the5

abstract graph G′ of P with respect to H∗;
p∗

and ← (Q(p∗
shp[1]), · · · , Q(p∗

shp[n]));6

return p∗
and;7

Algorithm 1: StrPlan

Given a path planning problem P and a heuristic function
H on P, we calculate an AND solution on P by creating the
abstract graph G′ of P and executing StrPlan algorithm
shown in Algorithm 1. One may think that the algorithm
correctly returns an AND solution on P. However, a shortest
Hamiltonian path from σ on G′ visits each goal node γ ∈ Γ
exactly once, while an AND solution on P may visit each
goal node γ ∈ Γ more than once. We should concern about
that for a calculated shortest Hamiltonian path p∗

shp of G′

such that p∗
shp[i] = (ui, vi) ∈ V ′, there is a possibility that

the last goal node vn is on a shortest path Q(p∗
shp[i]) from

ui to vi on G for some i ∈ [1, n−1]. At a first look, you may
suspect that StrPlan algorithm sometimes returns a wrong
answer, since a path p′

and :=(Q(p∗
shp[1]), · · · , Q(p∗

shp[n−1]))
allows an agent to reach all goals. However, the next theo-
rem guarantees that our algorithm is correct indeed.

Theorem 11. For any path planning problem P, the cost
of an AND solution p∗

and on P is equivalent to that of a
shortest Hamiltonian path p∗

shp from σ on the abstract graph
G′ = (V ′, E′, C′) of P with respect to the optimal cost func-
tion H∗, that is,

C(p∗
and) = C′(p∗

shp).

Proof.

C(p∗
and) = min

p∈Pand(σ,Γ)
C(p)

= min
π∈Πn

min
p∈P (σ,γπ[1],··· ,γπ[n])

C(p)

= min
π∈Πn

�
min

p1∈P (σ,γπ[1])
C(p1) + · · ·

· · · + min
pn∈P (γπ[n−1],γπ[n])

C(pn)

�

= min
π∈Πn

�
H∗(σ, γπ[1]) + · · · + H∗(γπ[n−1], γπ[n])

�
= min

π∈Πn

�
C′(σ, γπ[1]) + · · · + C′(γπ[n−1], γπ[n])

�
= C′(p∗

shp).

StrPlan algorithm calls calculation of a shortest path on
P exactly n(n + 1)/2 times, where n = |Γ|, and calculation
of a shortest Hamiltonian path on G′ once. Let ASTAR
and SHP be the worst case time complexity of the former
and the later, respectively. That is, ASTAR = O(l log m)
with a consistent heuristic function, where l = |E| and m =
|V |, and SHP = O(n22n). Therefore, the worst case time
complexity of StrPlan algorithm is O(n2ASTAR + SHP) =
O(n2(l log m + 2n)).

��� �����	��
��
�
���

Next we consider an incremental method that repeats
calculation of a shortest Hamiltonian path on the abstract
graph G′ of a given path planning problem P with respect
to a heuristic function H and update of H as shown in Al-
gorithm 2. We call the algorithm IncPlan.

Line 4 in IncPlan algorithm means the termination con-
dition. The algorithm clearly terminates after at most |F |
iterations. In the case that F = ∅ holds, Theorem 11 also
leads validity of IncPlan algorithm, since all of the minimum
costs between any two goals are calculated. In the case that
pshp[i] /∈ F for any i ∈ [1, n] holds, IncPlan algorithm always
returns a correct answer from the following theorem.

Theorem 12. Let G = (V, E, C) and G′ = (V, E, C ′) be
weighted graphs with the same sets of nodes and edges. For
any node v ∈ V , letting p be a shortest Hamiltonian path
from v on G, if C(p[i]) = C′(p[i]) for any i ∈ [1, |p|] and
C(e) ≤ C′(e) for any e ∈ E, then p is also a shortest Hamil-
tonian path from v on G′, that is,

C(p) = min
p′∈Pinc(V)

C′(p′),

where Pinc(V) :=
�

π∈Π|p|
P (vπ[1], · · · , vπ[|p|]), and vi repre-

sents the i-th node in V after arbitrarily ordering.

Proof. From C(p[i]) = C′(p[i]) for any i ∈ [1, |p|],
C(p) = C′(p) ≥ min

p′∈Pinc(V)
C′(p′).

1068

input : Path planning problem P and heuristic
function H

output: AND solution on P
F ← (Γ ∪ {σ}) × Γ;1

while true do2

pshp ← a shortest Hamiltonian path from σ on3

the abstract graph G′ of P with respect to H;
if F = ∅ or ∀i ∈ [1, n], pshp[i] /∈ F then break;4

foreach (u, v) in pshp do5

if (u, v) ∈ F then6

Q(u, v) ← a shortest path from u to v7

calculated by A* based on H;
H(u, v) ← C(Q(u, v));8

F ← F − {(u, v)};9

end10

end11

end12

p∗
and ← (Q(pshp[1]), · · · , Q(pshp[n]));13

return p∗
and;14

Algorithm 2: IncPlan

From C(e) ≤ C′(e) for any e ∈ E,

C(p) = min
p′∈Pinc(V)

C(p′) ≤ min
p′∈Pinc(V)

C′(p′).

IncPlan algorithm calls calculation of a shortest path on
P at most n(n + 1)/2 times and calculation of a shortest
Hamiltonian path on G′ at most (n2−n+2)/2 times. There-
fore, the worst case time complexity of IncPlan algorithm is
O(n2ASTAR + n2SHP) = O(n2(l log m + n22n)).

��� �����	
��� ��
���

Finally we consider an conversion method that converts
a given path planning problem P to another problem P ′ so
that we can solve it using A* only once. The idea of the
conversion is to attach a binary b ∈ Bn to each node v ∈ V ,
where b[i] represents whether an agent has already visited a
goal node γi ∈ Γ. A set Γ′ of converted goal nodes consists
of all goal nodes in Γ with 1n. An agent has only to find an
OR solution on P ′ for finding an AND solution on P. We
formalize the conversion as follows.

Definition 13 (OR Conversion). Given a path plan-
ning problem P, we define the OR conversion of P by

P ′ := (G′, σ′, Γ′),

such that G′ := (V ′, E′, C′), where

• V ′ := { (v, b) v ∈ V, b ∈ Bn, φ(v, b) = 1 }, where

φ(v, b) :=

�
1 (v = γi ∈ Γ ⇒ b[i] = 1),

0 (otherwise).

• E′ := { (u′, v′) u′, v′ ∈ V ′, ψ(u′, v′) = 1 }, where

ψ(u′, v′) :=

�����
����

1

�
�� (u, v) ∈ E,

v /∈ Γ ⇒ bv = bu,

v = γi ∈ Γ ⇒ bv = ri(bu)

	

� ,

0 (otherwise),

such that u′ = (u, bu) and v′ = (v, bv).

• C′(e′) := C(e) for any e′ ∈ E′.

• σ′ := (σ, 0n).

• Γ′ := { (γ, b) ∈ V ′ γ ∈ Γ, b = 1n }.
We prove the following lemma for Theorem 15 that shows

validity of the OR conversion.

Lemma 14. For any path planning problem P, the set
Pand(σ, Γ) for AND solution on P is equivalent to the set

P̂or(σ
′, Γ′) :=

�
p̂

p̂[i] := (ui, vi), ∀p′ ∈ Por(σ
′, Γ′)

s.t. p′[i] := ((ui, bu,i), (vi, bv,i))

,

with respect to the set Por(σ
′, Γ′) for OR solution on the OR

conversion P ′ = (G′, σ′, Γ′) of P. That is,

Pand(σ, Γ) = P̂or(σ
′, Γ′).

Proof. (⇒) Suppose that p ∈ Pand(σ, Γ), letting p[i] :=
(ui, vi). We can construct a path p′ such that p′[i] :=
((ui, bu,i), (vi, bv,i)), where

bu,i :=

�
0n (i = 1),

bv,i−1 (i > 1),

and

bv,i :=

�
bu,i (vi /∈ Γ),

rj(bu,i) (vi = γj ∈ Γ).

By the definition of the OR conversion, we have p′ ∈ Por(σ
′, Γ′).

Therefore, p ∈ P̂or(σ
′, Γ′).

(⇐) Suppose that p̂ ∈ P̂or(σ
′, Γ′), letting p̂[i] := (ûi, v̂i).

By the definition of P̂or(σ
′, Γ′), there exists p′ ∈ Por(σ

′, Γ′),
such that ûi = u′

i and v̂i = v′
i, where p′[i] := ((u′

i, b
′
u,i), (v

′
i, b

′
v,i)).

From the definition of OR conversion, we have b′u,1 = 0n and
b′v,n = 1n. That is, ûi = σ and v̂n = γ ∈ Γ. From the defi-
nition of ψ in OR conversion, for any goal node γ ∈ Γ, there
exists i such that v̂i = γ. Therefore, p̂ ∈ Pand(σ, Γ).

The next theorem shows that finding an AND solution on
P is surely equivalent to finding an OR solution of the OR
conversion P ′ of P.

Theorem 15. For any path planning problem P, the cost
of an AND solution p∗

and on P is equivalent to that of an
OR solution p∗

or on the OR conversion of P, that is,

C(p∗
and) = C′(p∗

or).

Proof. From Lemma 14,

C(p∗
and) = min

p∈Pand(σ,Γ)
C(p)

= min
p̂∈P̂or(σ′,Γ′)

C(p̂)

= min
p′∈Por(σ′,Γ′)

C′(p′)

= C′(p∗
or).

When we set up a heuristic function for OR solution on
P ′, we cannot take a trivial approach such as Manhattan
distance on P. The next theorem shows how to construct a
consistent heuristic function for OR solution on P ′ by using
one for single solution on P.

1069

Theorem 16. Let max0 and min0 be functions returning
max S and min S if S �= ∅, respectively, zero otherwise. For
any path planning problem P, letting P ′ be the OR conver-
sion of P, if a heuristic function H is consistent in P, then
a heuristic function hcnv for OR solution on P ′ defined by

hcnv(v′) := max

��
�

max0
γ∈R(bv)

H(v, γ),

min0
γ∈R(bv)

H(v, γ) + k(R(bv) − 1)

��
�

is also consistent with respect to OR solution on P ′, where
v′ := (v, bv), R(b) := { γi ∈ Γ b[i] = 0 }, and k := min

e∈E
C(e).

Proof. When v′ ∈ Γ′, clearly R(b) = ∅. Therefore,

hcnv(v′) = max { 0,−k } = 0.

Next we show that the triangle inequality holds for hcnv.
Let (v′, u′) ∈ E′ be an edge such that v′ := (v, bv) and
u′ := (u, bu). Since H is consistent in P and (v, u) ∈ E, we
have

hcnv(v′) ≤ C(v, u)+max

��
�

max0
γ∈R(bv)

H(u, γ),

min0
γ∈R(bv)

H(u, γ) + k(R(bv) − 1)

��
� .

When v′ ∈ Γ′, obviously hcnv(v′) = 0 ≤ C′(u′, v′) +
hcnv(v′).

When v′ /∈ Γ′ and u /∈ Γ, we have bv = bu from the defini-
tion of ψ in OR conversion. That is, R(bv) = R(bu). There-
fore, hcnv(v′) ≤ C(v, u) + hcnv(u′) = C′(v′, u′) + hcnv(u′).

When v′ /∈ Γ′ and u ∈ Γ, consistency of H leads H(u, u) =
0. By the definition of ψ, we have R(bv) = R(bu)∪{u}. The
first term of max operation is

max0
γ∈R(bv)

H(u, γ) = max0
γ∈R(bu)∪{u}

H(u, γ) = max0
γ∈R(bu)

H(u, γ).

The second term of max operation is

min0
γ∈R(bv)

H(u, γ) + k(|R(bv)| − 1)

= min0
γ∈R(bu)∪{u}

H(u, γ) + k(|R(bu) ∪ {u}| − 1)

= k|R(bu)|
≤ min0

γ∈R(bu)
H(u, γ) + k(|R(bu)| − 1),

since H(u, γ) ≥ k with u �= γ and k|∅| = 0. Therefore,
hcnv(v′) ≤ C′(v′, u′) + hcnv(u′).

Note that the search space of P ′ becomes larger than
that of P, although A* is called only once in the conver-
sion method. The worst case time complexity of the con-
version method is O(|E′| log |V ′|) = O(2n|E| log(2n|V |)) =
O(2nl log(2nm)).

�� ��������	
�
We consider path planning problem P on a 100×100 maze

shown in Fig. 1, as an application of the proposed methods.
G is defined as a two dimensional, undirected, grid graph.
For any edge (u, v) ∈ E, we set C(u, v) = 1 if both u and v
are unblocked, C(u, v) = ∞ otherwise. C(u, v) changes with
a fixed probability α ∈ � : 0 ≤ α ≤ 1, where a node v ∈ V
changes either from blocked to unblocked or from unblocked
to blocked. Each target also moves to an adjacent node
with a fixed probability β ∈ � : 0 ≤ β ≤ 1, where the
corresponding goal node γ ∈ Γ becomes the adjacent node.

Figure 1: Maze Problem

After each trial is over, which means that an agent achieves
a solution, both an initial node σ of the agent and a set Γ
of goal nodes are randomly reset. We also consider the case
where the agent does not know the map of a given maze
beforehand, where the agent can only observe information
(i.e., either blocked or unblocked) in its own node and the
adjacent four nodes and remember them in each trial. We
utilize Generalized Adaptive A* [14], the latest version of
Adaptive A* in all experiments. We denote the number of
targets by n.

���
� �������
Table 1 shows (a) the total number of calculations of opti-

mal path in each trial, (b) the total movements of the agent
in each trial, (c) the total number of node expansions in
A* algorithm in each trial, (d) the total runtime in each
trial, for both known and unknown maze settings in exper-
iments on a maze problem with stationary targets of OR
setting. NaivePlan represents the naive method calculating
the shortest paths to all goal nodes. MinPlan represents the
proposed method utilizing a heuristic function in Eq. (3).
We set α = 0.1. Each value is the average in 500 trials. Ta-
ble 2 shows experimental results in a problem with moving
targets in a similar way in Table 1. We set β = 0.1.

Comparing NaivePlan and MinPlan, all results show that
MinPlan is clearly better than NaivePlan. Looking at (b),
since the total movements of the agent means the length
of a shortest path, the results of MinPlan and NaivePlan
are almost the same, although they do not exactly identical
due to probabilistic change of costs and movement of targets.
Since NaivePlan calls Adaptive A* n times, the results in (a),
(c) and (d) of NaivePlan increase, as n increases. Contrary
to our intuition, all results of MinPlan and the results in
(b) of NaivePlan decrease, as n increases. That is because
the distance to the nearest target becomes smaller, as n
increases.

��� �	� �������
Table 3 shows experimental results on a maze problem

with stationary targets of AND setting, in a similar way
in Table 1. We set α = 0 and β = 0. We add (e) the
total calls of A* in each trial and (f) the total number of
calculations of a shortest Hamiltonian path in each trial.
In this experiment, each value is the average in 100 tri-
als. StrPlan, IncPlan, and CnvPlan represent the proposed
methods in Section 5.1, Section 5.2, and Section 5.3, respec-
tively. The worst case time complexities of StrPlan, IncPlan,

1070

Table 1: OR Setting with Stationary Targets
Known Maze Unknown Maze

(a) (b) (c) (d) (a) (b) (c) (d)
number searches moves expansions runtime [ms] searches moves expansions runtime [ms]

of per per per per per per per per
targets trial trial trial trial trial trial trial trial

NaivePlan
5 54.81 98.99 87369.62 20.29 768.84 432.97 1612872.98 591.43
10 75.60 66.46 137012.91 27.98 1012.56 276.79 2797733.59 1120.27
15 90.78 51.66 173474.40 34.32 1022.52 181.77 3157937.16 1264.39

MinPlan
5 10.96 98.99 2373.26 1.08 149.63 422.64 7502.98 31.30
10 7.56 66.46 1040.69 0.61 105.74 291.22 4121.48 21.57
15 6.05 51.66 573.52 0.43 71.81 194.98 2119.70 14.08

Table 2: OR Setting with Moving Targets
Known Maze Unknown Maze

(a) (b) (c) (d) (a) (b) (c) (d)
number searches moves expansions runtime [ms] searches moves expansions runtime [ms]

of per per per per per per per per
targets trial trial trial trial trial trial trial trial

NaivePlan
5 232.19 97.77 397006.24 97.40 1345.01 434.88 2880903.98 1195.86
10 446.76 64.90 836500.39 236.71 2129.80 273.57 6092105.11 2652.74
15 594.84 48.58 1116453.08 349.50 2672.34 203.92 8377218.38 3589.50

MinPlan
5 46.44 97.77 9499.80 3.86 279.51 453.41 18097.55 23.49
10 44.43 64.35 5005.14 2.90 200.26 257.62 8428.36 13.14
15 42.72 52.24 3425.08 2.62 163.97 188.48 5520.92 9.98

and CnvPlan are O(n2(l log m+2n)), O(n2(l log m+n22n)),
and O(2nl log(2nm)), respectively, where n is the number of
targets, l is the number of edges, and m is the number of
nodes.

The results in (b) show that all of the values, each of which
means the length of a shortest path, are exactly the same,
since α = 0 and β = 0. Focusing on the results in (d) of
CnvPlan, each running time is quite bigger than the other
methods in the same tendency of its worst case time com-
plexity when m � n. On the other hand, the results in (d)
of IncPlan is better than that of StrPlan when n ≤ 8, de-
spite that the worst case time complexity of IncPlan is worse
than that of StrPlan. The result indicates that IncPlan is
practically efficient than StrPlan when n is relatively small.
That is because that IncPlan executes Adaptive A* fewer
times than StrPlan in average case, as shown in the results
in (e). In actual situation such as Pac-Man, n is often not so
large. Actually, there exist only four ghosts in the Pac-Man
game as described previously. We conclude that IncPlan is
practically better than StrPlan, when n is relatively small.

�� �������	���

We addressed path planning with multiple targets on re-
cently developed Adaptive A* framework. We formalized
OR and AND settings, whose objectives are (1) an agent has
to reach one of the targets, and (2) an agent has to reach
all of the targets, respectively. For OR setting, we proposed
a construction method of a consistent heuristic function to

utilize Adaptive A*, keeping its consistency for both station-
ary and moving targets. For AND setting, we proposed three
methods to directly utilize Adaptive A* for each target. We
also proved that all of the methods always achieve an opti-
mal path of AND setting. Our experimental results showed
that the proposed methods properly work on an application,
i.e., maze problems, both in OR and in AND settings.

� ��
�������

[1] Jeff Bueckert, Simon X. Yang, Xiaobu Yuan, and Max
Q.-H. Meng. Neural Dynamics Based Multiple Target
Path Planning for a Mobile Robot. In Proceedings of
the IEEE International Conference on Robotics and
Biomimetics (ROBIO 2007), pages 1047–1052. IEEE,
2007.

[2] Dmitry Davidov and Shaul Markovitch. Multiple-Goal
Heuristic Search. Journal of Artificial Intelligence
Research, 26:417–451, 2006.

[3] Kurt Derr and Milos Manic. Multi-Robot
Multi-Target Particle Swarm Optimization Search in
Noisy Wireless Environments. In Proceedings of the
2nd IEEE Conference on Human System Interaction
(HSI 2009), pages 81–86. IEEE, 2009.

[4] Dominik Henrich, Christian Wurll, and Heinz Wörn.
Multi-Directional Search with Goal Switching for
Robot Path Planning. In Proceedings of the 11th
International Conference on Industrial and
Engineering Applications of Artificial Intelligence and

1071

Table 3: AND Setting
(a) (b) (c) (d) (e) (f)

number searches moves expansions runtime [ms] A* SHP
of per per per per per per

targets trial trial trial trial trial trial
StrPlan

2 1 390.65 5134.89 1.02 3 1
4 1 581.54 15936.72 3.24 10 1
6 1 751.50 32133.77 6.94 21 1
8 1 927.84 54660.20 11.24 36 1
10 1 1091.01 89479.78 19.00 55 1
12 1 1231.73 128265.40 28.91 78 1

IncPlan
2 1 390.65 4204.60 1.02 2.67 2.67
4 1 581.54 10455.06 2.48 8.26 4.11
6 1 751.50 19340.37 4.77 17.24 6.47
8 1 927.84 28963.47 8.73 27.70 8.74
10 1 1091.01 40889.10 23.25 39.42 11.08
12 1 1231.73 52139.51 102.05 52.64 14.62

CnvPlan
2 1 390.65 5254.49 1.46 1 0
4 1 581.54 27227.24 9.19 1 0
6 1 751.50 111743.10 74.05 1 0
8 1 927.84 501397.10 435.48 1 0
10 1 1091.01 1707189.00 2091.85 1 0
12 1 1231.73 6403776.00 9936.36 1 0

Expert Systems (IEA/AIE-98), volume 1416 of Lecture
Notes in Computer Science, pages 75–84.
Springer-Verlag, 1998.

[5] Toru Ishida and Richard E. Korf. Moving-Target
Search: A Real-Time Search for Changing Goals.
IEEE Transactions on Pattern Analysis and Machine
Intelligence, 17(6):609–619, 1995.

[6] Sven Koenig and Maxim Likhachev. D* Lite. In
Proceedings of the 18th National Conference on
Artificial Intelligence, pages 476–483. American
Association for Artificial Intelligence, 2002.

[7] Sven Koenig and Maxim Likhachev. Adaptive A*. In
Proceedings of 4th International Joint Conference on
Autonomous Agents and Multiagent Systems (AAMAS
2005), pages 1311–1312. ACM, 2005.

[8] Sven Koenig and Maxim Likhachev. A new principle
for incremental heuristic search: Theoretical results.
In Proceedings of the 16th International Conference on
Automated Planning and Scheduling (ICAPS 2006),
pages 402–405. AAAI, 2006.

[9] Sven Koenig and Maxim Likhachev. Real-time
Adaptive A*. In Proceedings of 5th International Joint
Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2006), pages 281–288. ACM, 2006.

[10] Sven Koenig, Maxim Likhachev, and David Furcy.
Lifelong Planning A*. Artificial Intelligence, pages
93–146, 2004.

[11] Sven Koenig, Maxim Likhachev, and Xiaoxun Sun.
Speeding up Moving-target Search. In Proceedings of
6th International Joint Conference on Autonomous
Agents and Multiagent Systems (AAMAS 2007), pages
1136–1143. IFAAMAS, 2007.

[12] Masashi Shimbo and Toru Ishida. Towards Real-Time

Search with Inadmissible Heuristics. In Proceedings of
the 14th European Conference on Artificial Intelligence
(ECAI 2000), pages 609–613. IOS Press, 2000.

[13] Xiaoxun Sun and Sven Koenig. The Fringe-Saving A*
Search Algorithm - A Feasibility Study. In Proceedings
of the 20th International Joint Conference on Artificial
Intelligence (IJCAI 2007), pages 2391–2397, 2007.

[14] Xiaoxun Sun, Sven Koenig, and William Yeo.
Generalized Adaptive A*. In Proceedings of 7th
International Joint Conference on Autonomous Agents
and Multiagent Systems (AAMAS 2008), pages
469–476. IFAAMAS, 2008.

[15] Xiaoxun Sun, William Yao, and Sven Koenig. Efficient
Incremental Search for Moving Target Search. In
Proceedings of the 22th International Joint Conference
on Artificial Intelligence (IJCAI 2009), pages
615–620, 2009.

[16] István Szita and András Lörincz. Learning to play
using low-complexity rule-based policies: Illustrations
through ms. pac-man. Journal of Artificial Intelligence
Research, 30:659–684, 2007.

[17] D. Zu, J.D. Han, and Mark Campbell. Artificial
Potential Guided Evolutionary Path Plan for
Multi-Vehicle Multi-Target Pursuit. In Proceedings of
the IEEE International Conference on Robotics and
Biomimetics (ROBIO 2004), pages 855–861. IEEE,
2004.

1072

